First Total Synthesis of Optically Active Oplopandiol Acetate, a Potent Antimycobacterial Polyyne Isolated from *Oplopanax horridus*

Liang XU, Xi Han WU, Guang Rong ZHENG, Jun Chao CAI*

Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 200031

Abstract: The first stereoselective total synthesis of oplopandiol acetate **1**, a potent antimycobacterial polygne isolated from *Oplopanax horridus*, is presented. And its absolute configuration is confirmed to be (11S,16S).

Keywords: Total synthesis, oplopandiol acetate.

Oplopanax horridus, commonly known as devil club, is a well-known shrub of western North American forests. The inner bark and roots can be used for a variety of ailments such as diabetes, rheumatism, tuberculosis, headache, and lung hemorrhage. Oplopandiol acetate **1**, a bioactive polyyne with significant anti-*candida*, antibacterial, and anti- mycobacterial activity, was isolated from *O. horridus* by Kobaisy in 1997. And its absolute configuration was determined to be (11S,16S) by the Mosher method¹.

(11S,16S)-oplopandiol acetate 1

In this communication, the first total synthesis of the optically pure oplopandiol acetate **1** is described, and its absolute configuration is confirmed to be (11S, 16S). According to our previous procedure for synthesis of polyacetylene²⁻⁴, a retrosynthetic analysis of **1** involves the dissection of C13-C14 bond to afford two fragments **2** and **3**, which are respectively prepared from L-(+)-tartaric acid and D-gluconolactone(**scheme 1**).

Scheme 1

Liang XU et al.

1,9-Nonanediol **4** was monosubstituted by *p*-methoxybenzyl chloride (MPMCl) to give the alcohol **5** which was subsequently converted to iodide **6** as depicted in **scheme 2**. Refluxing the iodide **6** and Ph_3P in toluene for 20 hours afforded the phosphonium salt **7** in high yield.

Scheme 2
H 0 (CH₂)₉0 H
$$\xrightarrow{a}$$
 H 0 (CH₂)₉0 M PM \xrightarrow{b} I(CH₂)₉0 M PM
 \xrightarrow{c} Ph₃⁺PCH₂ (CH₂)₈0 M PM \overline{I}
7

a) MPMCl / NaH, DMF-THF, 68%. b) Ph_3P , imidazole, I_2 , ether, r.t. 30min, 89%. c) Ph_3P , toluene, reflux 20 h, 82%.

Scheme 3

a) AcCl / pyridine, CH₂Cl₂, 0 $^{\circ}$ C, 68%. b) (COCl)₂, DMSO, Et₃N, CH₂Cl₂, -78 $^{\circ}$ C. c) Ph₃P⁺(CH₂)₉OMPMI, t-BuOK, THF, r.t. 30min then -78 $^{\circ}$ C, 65% in two steps. d) K₂CO₃ / MeOH, rt 45min, 95%. e) Ph₃P / CCl₄, reflux 24 h, 89%. f) LDA, THF, -78 $^{\circ}$ C, 65%. g) TBDMSCl, imidazole, DMF, 88%. h) DDQ, CH₂Cl₂-H₂O, r.t. 2h, 86%. i) Ac₂O / pyridine, r.t. 20h, 96%. j) NBS, AgNO₃, acetone, r.t. 6h, 75%.

The fragment 2 was synthesized by using L-(+)-tartaric acid as a chiral template, which was transformed into 8 by the published method⁵(scheme 3). Monoacetylation of 8 provided the monoprotected alcohol 9, followed by Swern-Oxidation of 9 to generate the corresponding aldehyde. The aldehyde was used directly for the Wittig reaction with phosphorus ylide which was prepared from the phosphonium salt 7. Deacetylation of 10,

214

Total Synthesis of Optically Active Oplopandiol Acetate

and then chlorination of the resulting alcohol **11** with Ph_3P/CCl_4 yielded chloride **12**. Treatment **12** with LDA in THF⁶ afforded terminal alkyne **13**. The hydroxy group in **13** was protected by using tertbutyldimethylsilyl chloride(TBDMSCl), and the resulted ether **14** was treated with DDQ/CH₂Cl₂-H₂O⁷ to remove the protective group (MPM) successfully. Very interestingly, when we utilized methoxymethyl(MOM) as the protective group, the desired deprotected alcohol cannot be obtained by commonly known procedures⁸⁻¹⁰ for removal of MOM group. Acetylation of alcohol **15** with Ac₂O / pyridine furnished acetate **16**, which upon reaction with NBS in the presence of AgNO₃ gave the bromoacetylene **17**.

On the other hand, the synthesis of fragment **3** started with D-gluconolactone which was converted to alcohol **18** by the known procedure¹¹(**scheme 4**). Protection of the alcohol **18** as its TBDMS ether followed by catalytic hydrogenation of the ether **19** with $H_2/10\%$ Pd-C in ethanol resulted in the exclusive formation of ether **20**, which was subsequently dehomologated with H_5IO_6 in EtOAc¹² to generate an aldehyde. The resulting aldehyde was used directly for the Wittig reaction with Ph₃P, CBr₄ and Et₃N at -78°C¹³ to give dibromoalkene **21**. Treatment of **21** with 2eqv of LDA in THF at -78°C, and then with 2eqv of n-BuLi afforded the desired alkyne **22**.

a) TBDMSCl, imidazole, DMF, r.t 12h, 85%. b) $H_2/10\%$ Pd-C, r.t 4h, 100%. c) H_5IO_6 , EtOAc, r.t 1h. d) CBr₄, Ph₃P, Et₃N, -78°C, 63% in two steps. e) 2eqLDA, THF, -78°C, 45min, then 2eq n-BuLi, -78°C 3hr, 85%.

Coupling alkyne 22 with bromoacetylene 17 *via* Cadiot-Chodkiewcz reaction under nitrogen (scheme 5), followed by deprotection of silyl groups with tetrabutyl ammonium fluoride(TBAF) in THF-H₂O at 0°C completed the total synthesis of the target molecule 1.

Liang XU et al.

a) CuCl, NH₂OH•HCl, 65%EtNH₂, MeOH, 0°C 20min. b) TBAF, THF-H₂O, 0°C 6h, 52% in two steps.

The spectral data of the synthetic **1** are virtually identical with the reported data of the natural product. The optical rotation of the synthetic **1**: $[\alpha]_D$ +194 (c=1.67, CHCl₃) and the natural product: $[\alpha]_D$ +164.5 (c=5.7, CHCl₃). Consequently, the absolute configuration of oplopandiol acetate is confirmed to be (11S, 16S). The anti-tumor activity of the synthetic **1** is under evaluation.

Acknowledgment

We thank the State Key Laboratory of Drug Research for financial support.

References and notes

- M. Kobaisy, Z. Abramowski, L. Lermer, G. Saxena, R. E. W. Hancock, G. H. N. Towers, J. Nat. Prod. 1997, 60, 1210-1213.
- 2. W. Lu, G.R. Zheng, J. C. Cai, Synlett, 1998, 737.
- 3. G. R. Zheng, W. Lu, A. Aisa, J. C. Cai, Chin. Chem. lett. 1998, 9, 1079.
- 4. G. R. Zheng, W. Lu, J. C. Cai, J. Nat. Prod, 1999, 62, 626.
- 5. B. Murrer, J. M Brown, P.A. Chaloner, P.N. Nichiloson, D. Park, Synthesis. 1979, 350.
- 6. J. S. Yadav, M. C. Chander, C. Rao Sirnivas, Tetrahedron lett. 1989, 30, 5455.
- 7. K. Horits, T. T. Yoshioka, T. Tanaka, Y. Oikawa, O. Yonemitsu, *Tetrahedron*, **1986**, 42, 3021.
- 8. A. I. Meyers, J. L. Durandetta, R. Munavu, J. Org. Chem, 1975, 40, 2025.
- 9. R. B. Woodward, J. Am. Chem. Soc. 1981, 103, 3210.
- 10. S. Hanessian, D. Delorme, Dufresne, Tetrahedron lett, 1984, 25, 2515.
- 11. W. Lu, G. R. Zheng, J. C. Cai, Tetrahedron lett, 1998, 39, 9521.
- 12. W. Lu, G. R. Zheng, A. Aisa, J. C. Cai, Chin. Chem. lett, 1998, 9, 621.
- 13. J. A. Marshall, B. E. Bolugh, J. Org. Chem. 1991, 56, 2225.
- 14. Data of **1**: $[\alpha]_D$ +194 (c=1.67, CHCl₃), IR (film) 3407, 2920, 1716, 1610, 1510, 1367, 1247, 1035cm⁻¹, ¹HNMR (CDCl₃, 400MHz) δ_H 0.99 (3H, t, J=7.4Hz), 1.25 (10H, m), 1.6 (2H, m), 1.71 (2H, m), 2.02 (3H, s), 2.12 (2H, dq, J=7.3, 1.5Hz), 4.05 (2H, t, J=6.8Hz), 4.35 (1H, t, J=6.5Hz), 5.18 (1H, d, J=8.3Hz), 5.5 (1H, dt, J=10.8, 8.0Hz), 5.6 (1H, dt, J=10.8, 7.3Hz)ppm. ¹³CNMR (400MHz, CDCl₃) δ_C 9.3 (C-18), 21.0 (CH₃ of Ac), 25.8 (C-2), 27.5 (C-8), 28.5 (C-6), 28.9 (C-4 and C-5), 29.1 (C-3), 29.2 (C-7), 30.6 (C-17), 58.5 (C-11), 63.9 (C-16), 64.7 (C-1), 68.8 (C-13 and C-14), 79.1(C-12), 80.8 (C-15), 127.9 (C-9), 134.3 (C-10), 171.4 (C=O) ppm. EIMS (*m*/*z*): 334 (M⁺), 316, 301, 173, 131, 117. HREIMS (*m*/*z*): 334.2187 (calcd for C₂₀H₃₀O₄, 334.2144). 316.2041(calcd for C₂₀H₂₈O₃, M⁺+H₂O, 316.2038).

Received 28 September 1999