First Total Synthesis of Optically Active Oplopandiol Acetate, a Potent Antimycobacterial Polyyne Isolated from Oplopanax horridus

Liang XU, Xi Han WU, Guang Rong ZHENG, Jun Chao CAI*
Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 200031

Abstract

The first stereoselective total synthesis of oplopandiol acetate 1, a potent antimycobacterial polyyne isolated from Oplopanax horridus, is presented. And its absolute configuration is confirmed to be (11S,16S).

Keywords: Total synthesis, oplopandiol acetate

Oplopanax horridus, commonly known as devil抯 club, is a well-known shrub of western North American forests. The inner bark and roots can be used for a variety of ailments such as diabetes, rheumatism, tuberculosis, headache, and lung hemorrhage. Oplopandiol acetate 1, a bioactive polyyne with significant anti-candida, antibacterial, and anti- mycobacterial activity, was isolated from O. horridus by Kobaisy in 1997. And its absolute configuration was determined to be $(11 \mathrm{~S}, 16 \mathrm{~S})$ by the Mosher method ${ }^{1}$.

(11S,16S)-oplopandiol acetate 1
In this communication, the first total synthesis of the optically pure oplopandiol acetate $\mathbf{1}$ is described, and its absolute configuration is confirmed to be ($11 \mathrm{~S}, 16 \mathrm{~S}$). According to our previous procedure for synthesis of polyacetylene ${ }^{2-4}$, a retrosynthetic analysis of $\mathbf{1}$ involves the dissection of C13-C14 bond to afford two fragments $\mathbf{2}$ and 3, which are respectively prepared from L-(+)-tartaric acid and D-gluconolactone(scheme 1).

Scheme 1

1,9-Nonanediol 4 was monosubstituted by p-methoxybenzyl chloride (MPMCl) to give the alcohol 5 which was subsequently converted to iodide $\mathbf{6}$ as depicted in scheme 2. Refluxing the iodide $\mathbf{6}$ and $\mathrm{Ph}_{3} \mathrm{P}$ in toluene for 20 hours afforded the phosphonium salt 7 in high yield.

Scheme 2

a) MPMCl / NaH, DMF-THF, 68%. b) $\mathrm{Ph}_{3} \mathrm{P}$, imidazole, I_{2}, ether, r.t. $30 \mathrm{~min}, 89 \%$. c) $\mathrm{Ph}_{3} \mathrm{P}$, toluene, reflux $20 \mathrm{~h}, 82 \%$.

Scheme 3

a) $\mathrm{AcCl} /$ pyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}, 68 \%$. b) $(\mathrm{COCl})_{2}$, $\mathrm{DMSO}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$. c) $\mathrm{Ph}_{3} \mathrm{P}^{+}\left(\mathrm{CH}_{2}\right)_{9}$ OMPMI, t-BuOK, THF, r.t. 30 min then $-78{ }^{\circ} \mathrm{C}, 65 \%$ in two steps. d) $\mathrm{K}_{2} \mathrm{CO}_{3} /$ MeOH , rt $45 \mathrm{~min}, 95 \%$. e) $\mathrm{Ph}_{3} \mathrm{P} / \mathrm{CCl}_{4}$, reflux $24 \mathrm{~h}, 89 \%$. f) LDA, THF, $-78{ }^{\circ} \mathrm{C}, 65 \%$. g) TBDMSCl, imidazole, $\mathrm{DMF}, 88 \%$. h) $\mathrm{DDQ}, \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{H}_{2} \mathrm{O}$, r.t. 2 h, 86%. i) $\mathrm{Ac}_{2} \mathrm{O} /$ pyridine, r.t. $20 h, 96 \%$. j) NBS, AgNO_{3}, acetone, r.t. $6 \mathrm{~h}, 75 \%$.

The fragment $\mathbf{2}$ was synthesized by using L-(+)-tartaric acid as a chiral template, which was transformed into 8 by the published method ${ }^{5}(\mathbf{s c h e m e} 3)$. Monoacetylation of $\mathbf{8}$ provided the monoprotected alcohol 9 , followed by Swern-Oxidation of 9 to generate the corresponding aldehyde. The aldehyde was used directly for the Wittig reaction with phosphorus ylide which was prepared from the phosphonium salt 7. Deacetylation of 10,
and then chlorination of the resulting alcohol 11 with $\mathrm{Ph}_{3} \mathrm{P} / \mathrm{CCl}_{4}$ yielded chloride $\mathbf{1 2}$. Treatment $\mathbf{1 2}$ with LDA in THF^{6} afforded terminal alkyne 13. The hydroxy group in $\mathbf{1 3}$ was protected by using tertbutyldimethylsilyl chloride(TBDMSCl), and the resulted ether $\mathbf{1 4}$ was treated with $\mathrm{DDQ} / \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{H}_{2} \mathrm{O}^{7}$ to remove the protective group (MPM) successfully. Very interestingly, when we utilized methoxymethyl(MOM) as the protective group, the desired deprotected alcohol cannot be obtained by commonly known procedures ${ }^{8-10}$ for removal of MOM group. Acetylation of alcohol $\mathbf{1 5}$ with $\mathrm{Ac}_{2} \mathrm{O}$ / pyridine furnished acetate $\mathbf{1 6}$, which upon reaction with NBS in the presence of AgNO_{3} gave the bromoacetylene 17.

On the other hand, the synthesis of fragment 3 started with D-gluconolactone which was converted to alcohol 18 by the known procedure ${ }^{11}$ (scheme 4). Protection of the alcohol $\mathbf{1 8}$ as its TBDMS ether followed by catalytic hydrogenation of the ether $\mathbf{1 9}$ with $\mathrm{H}_{2} / 10 \% \mathrm{Pd}-\mathrm{C}$ in ethanol resulted in the exclusive formation of ether $\mathbf{2 0}$, which was subsequently dehomologated with $\mathrm{H}_{5} \mathrm{IO}_{6}$ in EtOAc^{12} to generate an aldehyde. The resulting aldehyde was used directly for the Wittig reaction with $\mathrm{Ph}_{3} \mathrm{P}, \mathrm{CBr}_{4}$ and $\mathrm{Et}_{3} \mathrm{~N}$ at $-78^{\circ} \mathrm{C}^{13}$ to give dibromoalkene 21. Treatment of 21 with 2eqv of LDA in THF at $-78^{\circ} \mathrm{C}$, and then with 2eqv of $\mathrm{n}-\mathrm{BuLi}$ afforded the desired alkyne $\mathbf{2 2}$.

Scheme 4

a) TBDMSCl, imidazole, DMF, r.t $12 \mathrm{~h}, 85 \%$. b) $\mathrm{H}_{2} / 10 \% \mathrm{Pd}-\mathrm{C}$, r.t 4 h, 100%. c) $\mathrm{H}_{5} \mathrm{IO}_{6}$, EtOAc, r.t $1 \mathrm{~h} . \mathrm{d}) \mathrm{CBr}_{4}, \mathrm{Ph}_{3} \mathrm{P}, \mathrm{Et}_{3} \mathrm{~N},-78^{\circ} \mathrm{C}, 63 \%$ in two steps. e) $2 \mathrm{eqLDA}, \mathrm{THF},-78^{\circ} \mathrm{C}$, 45 min , then $2 \mathrm{eq} \mathrm{n}-\mathrm{BuLi},-78^{\circ} \mathrm{C} 3 \mathrm{hr}$, 85%.

Coupling alkyne $\mathbf{2 2}$ with bromoacetylene $\mathbf{1 7}$ via Cadiot-Chodkiewcz reaction under nitrogen (scheme 5), followed by deprotection of silyl groups with tetrabutyl ammonium fluoride(TBAF) in THF- $\mathrm{H}_{2} \mathrm{O}$ at $0^{\circ} \mathrm{C}$ completed the total synthesis of the target molecule 1.

Scheme 5

a) $\mathrm{CuCl}, \mathrm{NH}_{2} \mathrm{OH} \bullet \mathrm{HCl}, 65 \% \mathrm{EtNH}_{2}, \mathrm{MeOH}, 0^{\circ} \mathrm{C} 20 \mathrm{~min}$. b) TBAF, THF-H2O$, 0^{\circ} \mathrm{C} 6 \mathrm{~h}, 52 \%$ in two steps.

The spectral data of the synthetic 1 are virtually identical with the reported data of the natural product. The optical rotation of the synthetic 1: $[\alpha]_{\mathrm{D}}+194\left(\mathrm{c}=1.67, \mathrm{CHCl}_{3}\right)$ and the natural product: $[\alpha]_{\mathrm{D}}+164.5\left(\mathrm{c}=5.7, \mathrm{CHCl}_{3}\right)$. Consequently, the absolute configuration of oplopandiol acetate is confirmed to be (11S, 16S). The anti-tumor activity of the synthetic $\mathbf{1}$ is under evaluation.

Acknowledgment

We thank the State Key Laboratory of Drug Research for financial support.

References and notes

1. M. Kobaisy, Z. Abramowski, L. Lermer, G. Saxena, R. E. W. Hancock, G. H. N. Towers, J. Nat. Prod. 1997, 60, 1210-1213
2. W. Lu, G.R. Zheng, J. C. Cai, Synlett, 1998, 737.
3. G. R. Zheng, W. Lu, A. Aisa, J. C. Cai, Chin. Chem. lett. 1998, 9, 1079.
4. G. R. Zheng, W. Lu, J. C. Cai, J. Nat. Prod, 1999, 62, 626.
5. B. Murrer, J. M Brown, P.A. Chaloner, P.N. Nichiloson, D. Park, Synthesis. 1979, 350.
6. J. S. Yadav, M. C. Chander, C. Rao Sirnivas, Tetrahedron lett. 1989, 30, 5455.
7. K. Horits, T. T. Yoshioka, T. Tanaka, Y. Oikawa, O. Yonemitsu, Tetrahedron, 1986, 42, 3021.
8. A. I. Meyers, J. L. Durandetta, R. Munavu, J. Org. Chem, 1975, 40, 2025.
9. R. B. Woodward, J. Am. Chem. Soc. 1981, 103, 3210.
10. S. Hanessian, D. Delorme, Dufresne, Tetrahedron lett, 1984, 25, 2515.
11. W. Lu, G. R. Zheng, J. C. Cai, Tetrahedron lett, 1998, 39, 9521.
12. W. Lu, G. R. Zheng, A. Aisa, J. C. Cai, Chin. Chem. lett, 1998, 9, 621.
13. J. A. Marshall, B. E. Bolugh, J. Org. Chem. 1991, 56, 2225.
14. Data of 1: $[\alpha]_{\mathrm{D}}+194\left(\mathrm{c}=1.67, \mathrm{CHCl}_{3}\right)$, IR (film) $3407,2920,1716,1610,1510,1367,1247$, $1035 \mathrm{~cm}^{-1},{ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta_{\mathrm{H}} 0.99(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}), 1.25(10 \mathrm{H}, \mathrm{m}), 1.6(2 \mathrm{H}, \mathrm{m})$, $1.71(2 \mathrm{H}, \mathrm{m}), 2.02(3 \mathrm{H}, \mathrm{s}), 2.12(2 \mathrm{H}, \mathrm{dq}, \mathrm{J}=7.3,1.5 \mathrm{~Hz}), 4.05(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}), 4.35(1 \mathrm{H}, \mathrm{t}$, $\mathrm{J}=6.5 \mathrm{~Hz}), 5.18(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 5.5(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=10.8,8.0 \mathrm{~Hz}), 5.6(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=10.8$, $7.3 \mathrm{~Hz}) \mathrm{ppm} .{ }^{13} \mathrm{CNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad \delta_{\mathrm{C}} 9.3(\mathrm{C}-18), 21.0\left(\mathrm{CH}_{3}\right.$ of Ac$), 25.8(\mathrm{C}-2)$, 27.5 (C-8), 28.5 (C-6), 28.9 (C-4 and C-5), 29.1 (C-3), 29.2 (C-7), 30.6 (C-17), 58.5 (C11), 63.9 (C-16), 64.7 (C-1), 68.8 (C-13 and C-14), 79.1(C-12), 80.8 (C-15), 127.9 (C-9), 134.3 (C-10), $171.4(\mathrm{C}=\mathrm{O})$ ppm. EIMS $(\mathrm{m} / \mathrm{z}): 334\left(\mathrm{M}^{+}\right), 316,301,173,131,117$. HREIMS (m / z): 334.2187 (calcd for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{4}, 334.2144$). 316.2041 (calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{3}$, $\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 316.2038$).

Received 28 September 1999

